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1 Introduction

1.1 The Thesis Question

Can air and ground resonance stability be improved by judicious use of composite

couplings in the wing and kinematic couplings in the blades of a soft-inplane hingeless tiltrotor?

1.2 Background and Motivation

The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL
configurations. One possible improvement on the tiltrotors of today designs would be using a
soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced
weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are
inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore
tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground
resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell
Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In
order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is
important to be able to predict these instabilities accurately. Much of the research studying the
stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As
this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be
investigated.

Once we understand the problems of air and ground resonance in a tiltrotor, we must look
for solutions to these instabilities. Other researchers have found composite or kinematic couplings
in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has

shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will
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undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand

the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic
couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

A brief history of tiltrotors and the literature related to this project is given in the next
section. The remaining sections provide detail about the current analysis. The modeling techniques
used to model the blades, hub, rigid pylon, and elastic wing are described in detail. The validation
study used to give confidence to the model is shown with comparisons to a soft-inplane rotor and
to a gimballed rotor. Some results from the parametric studies to look at the couplings in the blades
are given followed by a discussion of the future research needed and the time line for completing

that research.



2 Literature Review

2.1 Tiltrotor History

One of the biggest hurdles facing a tiltrotor designer today results from the relatively
few number of tiltrotors that have been built: the knowledge that comes from experience is very
limited. It behooves us to spend a little time remembering what has been done before embarking
anew.

The first tiltrotor built and flown was the Transcendental Model 1-G as shown in Fig. |
[16] . The Model 1-G was developed without governmental support of any kind, a rarity today, and
was the first demonstration of the capabilities of a tiltrotor configuration. The Model 1-G achieved
first free flight on July 6, 1954 at Bellanca Field, New Castle, Delaware, and first conversion
to airplane mode in December, 1954. The Model 1-G used three-bladed, fully-articulated rotors
(i.e., rotors with flap and lag hinges and pitch bearings—see Fig. 2). After 23 hours of air time
over more than 100 flights, the Model 1-G crashed on July 20, 1955 and was not rebuilt [28] . In
1956 the Air Force awarded Transcendental a contract to build another tiltrotor. The result was the
Transcendental Model 2-G. basically the same design as the Model 1-G but with more powerful
engines. The Model 2-G was never flown [35] .

Bell Helicopters then developed the Bell XV-3, one of two designs chosen from a Air
Force / Army “convertiplane” competition in 1951 where 17 companies submitted 19 designs [28]
[35]. The XV-3 also had three blades and a fully-articulated hub. First flight for the XV-3, the
second tiltrotor to fly successfully, was in 1955. The first XV-3 built crashed, and a second XV-3
was built but this time with two-bladed teetering rotors (i.e., rotors with two blades rigidly attached
to one another with the shaft as a pivot point for flapping-see Fig. 3). The XV-3 led researchers

to discover and solve many technical challenges of the tiltrotor configuration [16] . In 1968, Bell
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began to develop the Model 300, now three-bladed but with gimballed rotors (i.e., rotors with

three blades rigidly attached to a hub which is free to pivot about the shaft on a universal joint).
Dynamic rotor/pylon instability tests were conducted, but the vehicle was never built. The stability
margins which had been a problem with the articulated rotors did not seem to be a problem with
this gimballed design: the Model 300 was stable well beyond its design dive speed [35] .

NASA and the U.S. Army initiated a proof-of-concept program in April, 1973. The
contract was awarded to Bell Helicopter to construct what began life as the Model 301 but became
the XV-15 Tiltrotor Research Aircraft shown in Fig. 4. The XV-15 has the best safety record of
any tiltrotor built to date. The 6.5 ton aircraft flew up to 346 mph at 16,000 ft. in June, 1980. It
has been called the “most successful high speed V/STOL ever built” [16] .

In December 1981, with the XV-15 tests progressing apace, the Deputy Secretary of
Defense initiated a development program for a single aircraft which would serve the U.S. Marine
Corps, the U.S. Air Force, and the U.S. Army. Budgets were shrinking so a single aircraft, or
at least several versions of a single aircraft, had the potential to save the Defense Department
significant sums of money. The requirements were stringent: for example, the craft must hover
at high altitudes at high temperatures with 8300 lb. payload. It must also be able to self-deploy
anywhere in the world without in-flight refueling [27] . Conventional helicopters, compound
helicopters, tiltrotors, and lift fan concepts were considered to meet these goals, but the tiltrotor
was chosen as the best configuration to meet the various requirements. A contract was awarded
to the team of Bell Helicopter Textron and Boeing Helicopters in 1982 with a view to develop
and produce the V-22 Osprey (Fig. 5), originally the JVX, eventually to deliver almost 1000
tiltrotors for four branches of the armed forces [27] . The first flight occurred on March 19, 1989.
Development of the V-22 is continuing at this time: the second wave of test vehicles has flown

approximately 1400 hours to date.
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Several other tiltrotors have reached the design or testing stage, including the Bell 266,

the Grumman Helicat, and the Boeing 222. Each offered valuable information about the tiltrotor

configuration, but none of these aircraft ever flew {22], [26] .

2.2 Advantages of Tiltrotors

The primary advantage of tiltrotors over helicopters is speed. Because the wing offloads
the rotor in forward flight, the rotor can be used to provide forward speed without also providing
lift. It is estimated that a tiltrotor can reach a rescue site on average 2-3 times faster than present
rescue aircraft (35] . Also, the limitation of edgewise flight which a helicopter faces is avoided by
tilting the rotor, in effect placing the rotor into a situation akin to climb in a helicopter [35] . But
if the only desire is speed, fixed wing aircraft are much superior. The advantage of tiltrotors over
fixed wing is obvious: they can hover, albeit not as efficiently as helicopters. The advantage of
tiltrotors over a Harrier or other jet V/STOL is lower disk loadings, or the ratio of thrust to disk
area (Fig. 6). This lower disk loading makes the tiltrotor much more efficient in hover (since
induced power loss is proportional to thrust multiplied by downwash velocity) and affords a lower
downwash velocity and lower tip-speed than other alternatives. As the tip-speed is lowered, the
noise level is decreased. As the downwash velocity is lowered, the tiltrotor is less bothersome to
people on the ground. The tiltrotor is an ideal choice when both speed and hovering capabilities are
important, though clearly it will never replace the helicopter for a truly efficient hovering machine
or the fixed wing for long fast flights from prepared runways.

There are other possibilities for the mix between speed and hovering ability, many of which
can be considered compound helicopters. But a study performed by the Group for Aeronautical
Research and Technology in Europe (GARTEUR) undertaken in the late 1980’s compared several

compound helicopters with a tiltrotor and concluded that the tiltrotor was more economically



feasible for a large range of operations than the compound helicopter [11] .

2.3 Soft-/Stiff-Inplane Hingeless Tiltrotors

Tiltrotors with stiff-inplane, gimballed rotors have shown their potential in the XV-15
which is still flying, the V-22 which is almost through with flight testing, and the Bell Augusta
609 which is available for ordering. Clearly this rotor system is effective. Why then do we want to
reconsider the design?

The tiltrotor offers intriguing possibilities for civil transport. For example, the “Civil
Tiltrotor Missions and Applications” research study concluded that tiltrotors could capture a
major share of the travel in the northeast corridor provided vertiports were available [48] .
NASAs Civil Tiltrotor Initiative is dedicated to helping this become a reality if possible. To be
economically viable, a civil tiltrotor needs to be as inexpensive and efficient as possible. One
possible improvement would be to use a soft-inplane hingeless hub. Soft-inplane rotor systems
have an inplane natural frequency lower than the rotor speed. This is the norm for articulated rotors
where a typical lag frequency is around .2 or .3/rev. But as hingeless rotors are increasingly chosen
for new designs, the V/STOL designer has a choice: the lag frequency shouldn’t be too close to
1/rev because of excessive blade loads but it can be either above or below 1/rev. Helicopters have
found advantages in using soft-inplane hingeless rotor systems such as reduced vibration and loads
and potentially improved handling qualities. There are fewer parts in a hingeless hub resulting
in potentially less weight and improved reliability. The Comanche is a prime example of these
advantages [38] .

But it remains true that the most successful tiltrotors, the XV-15, the V-22, and the new
609, all have stiff-inplane, gimballed rotors. This is at least in part because a soft-inplane rotor is

inherently in danger of the instabilities of ground and air resonance (see [18] ). Ground resonance
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is a catastrophic instability which can destroy aircraft and anything inside them. Air resonance is a

less catastrophic instability which causes large vibrations and severely degraded handling qualities.
The challenge of building an aircraft which satisfies all the mission requirements and doesn’t suffer
from air and ground resonance is more complicated for tiltrotors than it is for helicopters since
tiltrotors also suffer from whirl flutter [20] .

In order to design soft-inplane V/STOL aircraft that do not experience ground or air
resonance, it is important to be able to predict these instabilities accurately. Analytical computer
modeling to predict air and ground resonance in soft-inplane helicopters has been available for
some time. Much of the research studying the stability of tiltrotors has aimed to understand and
predict whirl flutter. As this instability is increasingly well understood, air and ground resonance
for a tiltrotor need to be investigated.

Once these instabilities in a tiltrotor are well understood, the question becomes what can
be done to ensure stability. Many studies have found composite or kinematic couplings in the
blades of a helicopter helpful for ground and air resonance. Tiltrotor research has shown composite
couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model
ground and air resonance of a soft-inplane hingeless tiltrotor to better understand the mechanisms
involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the

blades would aid in stabilizing these instabilities in a tiltrotor.

2.4 Instabilities

One of the great challenges in aircraft design is to be very sure that there are no instabilities
encountered within the operating regime of the aircraft. The tiltrotor has several possible
instabilities which must be avoided. Whirl flutter is a concern for all tiltrotors while air and ground

resonance concern only soft-in-plane tiltrotors.
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24.1  Air and Ground Resonance in a Helicopter

Ground resonance was first observed in the autogiros in the 1930’s and early 1940’s. This
instability was not well understood at that time and was therefore difficult to avoid by design.
The American Helicopter Society listed the characterization of air and ground resonance as one
of the top twenty advances in vertical flight history [7] . Ground resonance occurs when the low
frequency lag mode of the rotor (in the non-rotating frame) coalesces with a fuselage or body
frequency. The cyclic lag modes (. and {,, produce a wobble of the rotor center of gravity. This
shifting fore and aft and laterally of the effective mass of the rotor can couple with the vibration
of the fuselage to produce huge displacements. On a helicopter sitting on the ground, the body
frequencies are governed primarily by the stiffness of the landing gear-aerodynamic forces play
very little role. Ground resonance can destroy an aircraft in seconds (as shown by the Kellet XR-2
shown in Fig. 7).

Air resonance is a similar aeromechanical instability mathematically but occurs in the air,
often in a hingeless rotor [18] . Unlike for ground resonance, aerodynamic forces play an important
role in air resonance. Air resonance is rarely catastrophic, but since this instability causes very
large vibrations (which leads to issues of passenger comfort and material fatigue life) and much
poorer handing qualities, regions of instability should be avoided if possible [37] .

The instability of ground resonance was first explained mathematically by Coleman and
Wagner independently in 1943 [9] . These early analyses neglected aerodynamics, certainly
a good first approximation for ground resonance. Both Coleman and Wagner developed a
simple four-degree-of-freedom model which included high and low frequency lag modes (in the
non-rotating frame) for the blade and body pitch and roll. The graph shown in Fig. 8 shows the
rotor rotation speed on the horizontal axis and the frequencies of the various degrees of freedom

on the vertical axis. As the low frequency lag mode coalesces with the body mode an instability
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occurs. This form of graph has come to be called a Coleman diagram [9] .

The damping associated with this simple model is quite distinctive as shown in Fig. 9.
This plot shows the damping ratios from a four-degree-of-freedom system, blade cyclic lag plus
body lateral and longitudinal motion. With no aerodynamics present, the damping of all four
degrees of freedom is zero except in the regions of instability. In these regions the low frequency
lag mode has coalesced with one of the body frequencies: one mode becomes unstable and the
other mode becomes even more stable. In a helicopter it is the low frequency lag mode which goes
unstable. As aerodynamic forces are added, the damping is no longer zero outside of the unstable
regions. When this is the case one of the modes will be more damped than the other. It is typically
the less damped mode that becomes unstable. Again, in a helicopter this usually means that the low
frequency lag mode becomes unstable while the fuselage mode becomes even more stable since
the rotor body modes are usually more damped than the rotor lag modes. Preliminary results with
this tiltrotor analysis show that it is typically the wing modes that go unstable.

Coleman’s formulation gives rise to a very simple stability criterion shown below: a

helicopter would be stable if

2
caes > 5 ()35
where is ‘,%i— is half the ratio of the rotor mass to the support mass, % is the non-dimensional body
lateral mode, CE is the damping in the lag mode, Cy; is the damping in the body lateral mode, and
v¢ is the rotor lag frequency (assuming that the frequency for the body mode is not the same for
both lateral and longitudinal motion) [8] . This simple criterion shows that it is necessary to have
damping in both the body mode and in the lag mode. Thus landing gear dampers and rotor lag
dampers exist on almost all helicopters flying today. The presence of the ratio of the rotor mass

to the support mass is instructive: if the rotor mass is large with respect to the body mass, more

damping is needed to stabilize the vehicle. Also, this simple stability criterion makes it clear that a
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stiff-inplane rotor will not suffer ground resonance since (1 — ) is negative [18] .

Coleman’s basic theory was not enough to eliminate the problems with other helicopters,
including the Sikorsky XR-4, R-5, and R-6 [7] . Clearly a more exact analysis of this phenomena
is desired since avoiding ground resonance is a prime design requirement. Advances in ground
resonance prediction have come along steadily since the 1970’s with a plethora of studies. In 1970
Lytwyn, Miao, and Woitsch expanded the basic analysis to hingeless rotors where air resonance is
more of a problem [25] . Dynamic inflow was shown to be important in the early 1980’s starting
with Johnson in 1982 and Friedmann and Venkatesan in 1986 [19] , [12] . The importance of an
accurate trim model to air resonance stability was shown by Nagabhushanam and Gaonkar and
later by others [31] , {30] . Ground and air resonance stability is now incorporated into many
comprehensive rotorcraft codes. Some additional contributions will be discussed in the next
section.

Comprehensive codes to predict ground and air resonance in tiltrotors have been slower in
coming. The lack of reliable methods of ensuring ground resonance for a tiltrotor has certainly
contributed to the pervasive use of gimbal technology in the tiltrotors flying today. Going to a

stiff-inplane gimballed hub for the XV-15 and the V-22 eliminated these problems.

2.4.2  Whirl Flutter in a Tiltrotor

In 1960, two Lockheed Electra aircraft crashed with loss of life in what is now called
propeller/nacelle whirl flutter or simply whirl flutter [20] . Whirl flutter is a dynamic instability
where the inplane forces couple with wing motions to become unstable. This possibility was
first published by Taylor and Browne in 1938 and later investigated academically by Scanlan
in the 1950%s [47], [43] . The cases of whirl flutter in the Electra, occurring as they did in a
propeller-driven, fixed-wing aircraft, suggested the possibility that the tiltrotor configuration might

also be subject to a similar instability [42] .
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In a 1962 wind-tunnel test of the XV-3 in the NASA Ames full-scale tunnel. an instability

driven by a coupling between the proprotor and the pylon was discovered (21] . This finding led
many researchers to look into whirl flutter in tiltrotors. Kvatemik reviewed the state of the art of
whirl flutter research in 1976 and again in 1991 and 1992 [22], [23], [24] .

Whereas a typical ground resonance plot is with a rotor speed sweep, a typical whirl flutter
plot is versus forward speed as is shown in Fig. 10. The wing modes marked c, b, and ¢ in the plots
here (chordwise bending, beamwise bending, and torsion) all go unstable at high enough forward

speeds. This instability is very violent and can destroy the aircraft.

243 Air and Ground Resonance in a Tiltrotor

Twenty-six years ago Boeing conducted two wind tunnel tests for the Model 222 which
was designed as soft-inplane hingeless tiltrotor. The first test in 1973 used a 1/4.6 Froude-scaled
Model 222 in the Boeing V/STOL wind tunnel. Steady state rotor and aircraft loads, performance
data, and stability derivatives from mid-transition to cruise were obtained [29] . The second
test was a full-size, semi-span model test in the NASA Ames 40’ by 80’ wind tunnel. This test
identified regions with degraded stability and investigated some active feedback systems to add
damping to the lightly damped wing modes. All the tests done in the wind tunnel were in cruise
mode; no ground resonance data was gathered [26] . This test was compared to the 1971 Bell
Helicopter test of a 25-foot gimballed rotor in the same NASA 40’ by 80" wind tunnel [17] . Both

of these tests used the same NASA wing and pylon making it easier to compare them.

2.5 Possible Solutions

During the years from 1970 to 1998, advances in computing power developed to allow
more exact characterizations of the instabilities of ground resonance. air resonance, and whirl

flutter. The obvious mechanisms of ensuring the stability of the V/STOL vehicle were to use
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either stiff-inplane rotor systems or lag and landing gear dampers. These solutions neglected the

advantages of a soft-inplane hub and added weight and complexity. The search was then for other
ways to stabilize these instabilities.

One possible solution to the stability problems of air resonance, ground resonance, and
whirl flutter, is the use of aeroelastic couplings. Composite tailoring techniques can now introduce
couplings into wings or blades. For example, consider a composite beam with two layers, one with
fibers running at 45 degrees and one with fibers running down the length of the beam. This kind of
unbalanced laminate structure will exhibit bending-torsion coupling. Pushing up on the end of the
beam will twist the beam. This is the sort of construction that could be used in the spar of a tiltrotor
wing or blade (Fig. 11) or in the flexbeam of a rotor blade (Fig. 12).

Kinematic couplings in the blades could be created in several ways other than with
composite tailoring. Skewed hinges in an articulated blade can create pitch-lag or pitch-flap
couplings (Fig. 13). The order of the hinges when they aren’t coincident create couplings from
the steady coning or lag angles. Feedback systems can couple pitch and blade motion. Also, a

pitch-link outboard of a flexure as in this example causes pitch-flap couplings (Fig. 14).

2.5.1 Blade Couplings For Helicopter Air and Ground Resonance

Using kinematic couplings in the blades to stabilize air and ground resonance for a
helicopter is not an uncommon concept in the literature. Burkam and Miao started this research in
1972 [6] . In 1977 Ormiston published a landmark paper investigating many different contributing
factors. He discovered that combinations of pitch-flap and pitch-lag couplings with structural
flap-lag coupling were most helpful for stabilizing air and ground resonance. Ormiston also
showed that ground resonance was very different from air resonance and that the factors which
improved air resonance stability margins (for example pitch-lag coupling, 4 < 0, where the blade

pitches nose-down as it lags back) destabilized ground resonance [36] .
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Bousman worked with these couplings experimentally in 1981; this research showed that

pitch-lag coupling (64 < 0) improved stability away from the critical regions of air resonance
instability but was less helpful immediately around the instability {5] . In 1993 Smith and Chopra
investigated composite tailoring of the blades to postpone or eliminate ground and air resonance
instabilities for a helicopter [45] . Composite tailored blades with pitch-lag coupling improved air
resonance stability and pitch-flap couplings reduced the air resonance stability margins though
this effect was less powerful than the pitch-lag couplings. Gandhi and Hathaway published an
optimization study that showed that pitch-lag with §4 < 0, pitch-flap coupling where the blade
pitches nose-down as it flaps up (635 > 0), and a lag-pitch-flap hinge sequence formed a good

combination to stabilize ground resonance [14] .

252 Blade Couplings For Tiltrotor Whirl Flutter

Gaffey published a study in 1969 which considered pitch-flap coupling for whirl flutter
in a tiltrotor. Gaffey found that pitch-flap coupling with 43 < Ohad a stabilizing trend on whirl
flutter and that 63 > 0 destabilized whirl flutter [13] . More than twenty years later, Nixon
showed that elastic extension-twist coupling of the rotor blade can improve tiltrotor aerodynamic
performance but that this coupling degrades the stability for whirl flutter [35] . Nixon’s research
also investigated composite couplings in the blades to stabilize whirl flutter. This study found
that elastic bending-twist coupling in the blades has potential to increase whirl flutter stability
and that the amount of coupling required is feasible for performance and blade loads. Fig. 15
shows an increase in whirl flutter stability based on flatwise bending-twist couplings in the blade

taken from Ref. [35] . Here A = = is a measure of the off-diagonal coupling between the

Ko
El+G
flatwise-bending and twist of the blade. A is sensitive to the forward velocity unlike kinematic

pitch-lag coupling because as V' increases the blade has more collective pitch so that more of

the flatwise bending in the lag direction. As V increases from 100 to 400 knots, a A value of .1
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increases from a 84 value of 0.4 to 0.7.

2.5.3 Composite Tailoring of the Wing for Whirl Flutter

In 1995 a group of researchers from Bell published an analysis showing that tailoring
the wing with composites could allow the V-22 to use an 18% thickness-to-chord ratio wing
instead of a 23% ratio without degrading the whirl flutter stability margin [39] . Using comparable
thicknesses, a 24 knot increase in flutter speed was predicted. In 1997 a wind tunnel test at NASA
Langley showed a 30 knot delay in whirl flutter onset (Fig. 16) [10] . The 18% thick wing used
wing beamwise bending/torsion coupling in the skin to decrease the natural coupling between
bending and torsion due to the offset of the pylon and rotor masses from the pylon attachment
point. This improved the stability of the wing bending mode but degraded the stability of the wing
chord mode. Tailoring the wing spar caps alleviated the loss of stability for the wing chord mode.

Barkai and Rand showed that chordwise bending-twist in the wing was beneficial for whirl
flutter stability in gimballed, stiff-inplane tiltrotors [1] . Fig. 17 shows the increase in whirl flutter
stability she calculated using wing chordwise-bending-twist coupling. In this figure %ﬁ = 2—N}'—V_—N
where Ny is the number of plies oriented at an angle # and N is the total number of plies; C
is the off-diagonal coupling modulus for bending-twist coupling in the composite layup [41] .
Though this study and the Bell study discussed above were for gimballed, stiff-inplane tiltrotors,

their importance lies in a stability increase for a tiltrotor using aeroelastic couplings in the wing,.

2.6 Modeling

Aerospace engineering has come a long way from the days when the an aircraft could be
built and flown in a year. Stringent requirements are placed on new aircraft today for performance,
efficiency, and safety. Nor are funds so free-flowing that we can afford to tread far down the road

for one design only to find it untenable. Comprehensive modeling codes are used to test as much as
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possible for each potential design as inexpensively as possible. Accurate modeling of the tiltrotor

is essential to predicting its stability. Since the XV-3. the XV-15, and the V-22 are all stiff-inplane
gimballed rotors. the vast majority of studies conducted for tiltrotor stability have focused on whirl
flutter analysis.

Aeroelastic analysis began in the 1960’s and expanded significantly in the 1970’s. In 1974
Johnson compared the Bell and Boeing rotors discussed above using an analysis that included
hover, conversion, and forward flight and later expanded this model to a comprehensive aeroelastic
model which became CAMRAD [17] . In 1984 and 1985 Kvaternik developed the Proprotor
Aeroelastic Stability Analysis (PASTA) code at NASA Langley [24] . By the third version of
PASTA eleven degrees of freedom were modeled including rigid flapping and lead-lag motion of
the blade, gimbal motion, and a rigid control system. This code as many others of that era included
only cruise mode. Also, a comprehensive aeroelastic analysis called DYN4 (for rigid blades or
DYNS5 for elastic blades) has been developed by Bell Helicopters [46] .

In 1993 the University of Maryland Advanced Rotorcraft Code (UMARC) was expanded
to allow whirl flutter research. This analysis, which included hover. transition, and forward flight
modes, consisted of a gimballed hub with blades and wing modeled using the finite element
method {3571, [3].

Srinivas expanded the UMARC code in 1995 to include the entire tiltrotor including the
whole wing span and both rotors using the finite element method (Fig. 18) [46] .One of Srinivas’
conclusions was that for whirl flutter the symmetric modes modeled using a wind tunnel, semi-span
model were the modes that became unstable first and hence set the flutter speed. This indicates
that a good first step in modeling a tiltrotor would be to use a semi-span model.

In 1995, a group of researchers from the Technion Institute in Israel presented a new

analysis based upon a numerical technique to preserve the symbolic exactness of the equations of
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motion. This method retained the partial derivatives for the stability analysis and allowed them to

discuss some of the causes for whirl flutter in tiltrotors [40] , [41] .

2.7 Conclusions

Understanding of the tiltrotor configuration has grown significantly but more remains to
be done. One of the venues where additional research is needed is soft-inplane hingeless tiltrotors.
An analysis tool is needed to accurately predict the instabilities of ground and air resonance.
Once this analysis is in place, numerous studies need to be conducted to examine the effects of
various parameters on these instabilities. One possible source for a solution comes from aeroelastic
couplings: composite couplings in the wing and kinematic couplings in the blades. There is a clear

place for this research to add to the body of knowledge.
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3 Tiltrotor Modeling

3.1 Approach Overview

A semi-span tiltrotor is modeled using the right wing, pylon, and rotor assembly. The root
of the wing is assumed to be fixed in space as for a wind tunnel model. The wing is modeled as an
elastic finite element beam. Three displacements in the x, y, and z directions are modeled between
the pylon center of gravity and the hub and three additional displacements are allowed between
the pylon center of gravity and the wing attachment point. The pylon is rigid and attached to the
wing with a downstop spring. The blades are assumed to be rigid with flap and lag degrees of
freedom. Any desired twist can be used. The model is pictured in Fig. 1. Response calculations
are performed to obtain the steady coning and inflow as well as one of ¢ and 8+5 the other of
which is assumed to be known. An eigenvalue analysis provides stability information.

The model itself is formulated using Hamilton’s principle to derive the equations of the
motion for the entire model.

<5n=/t'z (8U — 6T — §W)dt = 0 (1

Jt,

Since energies are additive, the wing, pylon, and blades can be treated separately. The kinetic,
strain, and work energies of the blades with arbitrary hub motion are derived initially. The motion
of elastic blades with hub motion is modeled following the method described in the UMARC
manual [3] . The hub can be gimballed, hingeless, or articulated. A rigid blade simplification
is made: the kinetic energy and work energy terms can then be integrated out the length of the
blade. A simple strain energy formulation is used including springs for the flap and lag degrees of
freedom as well as the gimbal. The wing is modeled using the finite element method as a simple
beam with five degrees of freedom at each node—extension in the wing is constrained to zero.

The rigid pylon serves to connect the hub motion with the wing-tip motion. The contributions to
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the kinetic, strain. and work energies from the blades are then added to the contributions from the

pylon and wing. Hamilton’s principle is applied to produce global equations of motion.

3.2 Blade and Hub

The blade is modeled originally as an elastic beam. Any displacement and rotation is
allowed, each a function of position on the blade. The degrees of freedom used are given in the
vector

lue v w ¢ zF yr 2zFr O, a5 U, | 2)
where g, yF, and zp are hub displacements, ¢, a,, and %, are hub rotations, and u., v, and w
are displacements in the cross-sectional frame as shown in Fig. 2. Hamilton’s principle is used to
derive the equations of motion for the blade with six degrees of freedom for the hub motion.

Note that throughout the derivation whenever allowable, an ordering scheme was applied.
The orders of the various variables as given in Appendix 8.3 were adapted from the work of Smith
and Nixon [44] , [35] . The resulting equations of motion for the blade with hub motion were of
order ¢; that is, the largest terms in each of the equations were of order €. It was decided to retain
all terms of orders e, =2, =2, and £~ and only linear terms of order 2. This convention is applied

throughout the derivation of the blade and hub matrices.

3.2.1 Kinetic Energy

The variation of kinetic energy is given by

R
6T = / / / pV - §Vdnd¢ dzx (3)
JO
A

To find the velocity V, the position vector is determined and differentiated with respect to time.
This position vector is expressed as the displacement from a fixed point in space to any point on

the undeformed elastic axis as expressed in the inertial coordinate system. This vector 7 is given
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by the following equation.

:L‘F . " z
ro= yr p + [Tui]” [Thw) " [Ton) " [Tr) T {0
zZF 0
u 0
+ [Toi) T [Thw) " [Ton) T [Tur) T [Te)© vcos g + wsin by +[Tu)"{ 7 4)
—vsinfy + wcos by ¢

The transformation matrices used in this formula are given explicitly in Appendix 8.4. In general
[Tww:] accounts for the rotation of the hub given by @,, a5, and ¥,. [Th,,] accounts for the pylon
rotation ap,. [Tr4] accounts for the azimuthal rotation . [T, accounts for precone and gimbal
angle as discussed below. [T,] accounts for the collective pitch setting and [Tj] expresses the
displacement due to the elastic bending of the blade. 7 and ¢ are cross-sectional coordinates and
is the distance along the blade. Foreshortening effects are included so that the degree of freedom
u is the expressed as the difference between the elastic axial deflection u. and the kinematic axial
deflection up.
T
U=Ue — Up = Up — /0 (V60 + w'bw') dx &)

Because this position vector is expressed in the inertial frame, the velocity V can be calculated
without recourse to differentiating unit vectors for the frame of reference.

The variation of velocity is then calculated. Since the velocity includes time derivatives
of the degrees of freedom, the variation of velocity § V includes terms such as §%. Integration by

parts is used to eliminate such terms.

t? 1 tg 1
/ / //p (Ty, bve + Ty, 60c)dA dx dt = / / //p <Tv,. - -(%Ti,r> bv. dA dz dt (6)
t, Jo Ju. Jo
A A

This integration by parts allows the kinetic energy to be expressed as

t t2 1
/. 6Tdt:/tl /Om(Tp+ZTq‘.6qi)dxdt %)

where ¢; ranges over all the degrees of freedom and their derivatives with respect to blade position

z and T are the foreshortening terms.
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3.2.2 Aerodynamics

The virtual work 6 needed for Hamilton’s principle comes from the aerodynamic forcing
on the blades assumed here to be quasi-steady. Uniform inflow is also assumed. The aerodynamic

forces at an arbitrary blade station can be expressed as lift, drag, and pitching moment.

L = él—pV2cCl
1 e
M = épV2c2C'm

Ly, Ly, and L,, are the external loads acting along the deformed axis. Afy is the moment about
the deformed elastic axis. These loads are shown in Fig. 3. Assume forms for the aerodynamic

coefficients as
Ci = c¢p+aa
Cy = cq+doa? &)
Cm = Chac+ fia
The first order polynomial term d; |¢f in the expression for the coefficient for drag is not included.

An attached flow assumption is made along with a small angle approximation for « so that

sinae = «
cosa = 1
vV = Ur (10)
sinA = g—:’
o = _Up
= Uy

These substitutions along with non-dimensionalization give the following forms for the
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aerodynamic forces:

11,
Ly, = =2 (—cqurUp) (h
6 a
3 11, 2 2
b = harp e 128 (o0 - 0h - o)
3 Lyly
Ly = —gvhUrUp + 222 (coU} - cslirlp)
1 1520
My = gvlheaUrUp + &= (cCrmacUt — eacoUt — cLUTUp + eacalUrUp)

The incident velocity comes from two major sources: the wind velocity and the blade
velocity. The position on the blade with respect to the hub can be calculated as in the previous

section. This position is differentiated with respect to time to give the blade velocities.

U — (i}l -%—w'(i)) (ncos, — (sinby)

xl .t r .
oS = - (w —v ¢> (nsiné; + ( cosby) (12)
2 U — ¢(nsinb + (cosby)

W+ ¢ (ncosh) — (sinby)
where 6, is the sum of the elastic twist and the pitch setting at this blade position, §; = 8y + ¢.

The velocity of the wind comes from two sources: inflow and forward velocity. The inflow term
A is vertical in the hub plane. The forward velocity component is horizontal in the inertial frame.
Note that this equates to a different definition of x than is used in the helicopter community:
W= —V—C% for helicopters where « is the tilt of the shaft, but u = Q 7 for tiltrotors. V;, as shown

below has been transformed into the undeformed frame.

n 0
Vw = [Tur] [Trh] [Thw] [ wz] 0 + 0 (13)
0 —-A
The blade velocities in the undeformed frame are found from
(i?] 0 I T F
‘/bh = ?)1 + [Tur] 0 X n + [Tur] [ rh] [Thw] [Twz} yF
2.’1 Q Z1 2F
—, T+u 0
+ [Tur] {Trh] {Thw] [Twi] _C:Ys X v + [Tcu]T [Tdc]T nr 14)
-, w 0

where {2 is the rotor rotational speed. These aerodynamic loads are calculated using blade section

“strip” analysis based on the angle of attack at the section three-quarter chord location; 7, is the
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chordwise offset between the elastic axis and the 3/4 chord position. Up, U, and U, are found by

totaling the velocities above and transforming them to the deformed frame.

Ur U,
Ur = {Tdc] [Tcu} Uy = [Tdc] [Tcu] (Vbh - Vw) (15)
Up U,

Once these velocities are expressed in the deformed frame, they can be substituted into the forms

for the aerodynamic forces as given above to give the virtual work terms.

3.2.3 Gimbal Modeling

To give some degree of confidence that this tiltrotor model is realistic, it was necessary
to model a gimballed hub. The vast majority of wind tunnel data and other analyses for tiltrotors
are based on gimballed hubs since the tiltrotors flying today are use gimballed rotors. The gimbal
is modeled throughout following the method described in [35] . The gimbal is treated as two

additional degrees of freedom of hub motion where

Be = Bac cosy + Bagsiny (16)
This B is added into the transformation matrices with precone so that the transformation matrix
between rotating and undeformed coordinate systems takes the following form.
cos 3, +sin 3, (Bgocos v + Bggsinyg) 0 —cos By (Bee cos + Bggsiny) + sin By
[Tw] =10 10
cos 3, (Bae cos ¥ + Bggsiny) — sin By 0 cosB, +sin B, (Bge cosy + Bggsin )
17)

The effect of the gimbal motion is shown in Fig. 4.

3.24  Rigid, Twisted Blade

The resulting kinetic energy terms and work energy terms are simplified to rigid blade
coordinates. Many studies have shown that rigid blades can provide a good approximation for
stability analyses. This simplification allows comparison with other rigid blade analyses and with
equations of motion derived by hand. Also, since the present version of this analysis does not

include modal analysis, using a rigid blade keeps the number of degrees of freedom to a minimum.
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The primary elastic blade degrees of freedom are simplified to rigid flap and lag degrees

of freedom. Extension and elastic twist are not modeled in the rigid blade code.

Ue = ¢=20
v = —sin((z—e¢) (18)
wy = sinfB(x—ey)

All of the elastic blade terms are simplified in a similar manner; the substitutions are explicitly
given in Appendix 8.5. The resulting degrees of freedom for the blade / hub system in the rotating
frame are
|8 ¢ 2r yr zr a5 ¢y ¥, Boc Bas | (19)

The chordwise offset between the blade center of gravity and the elastic axis and the flapwise and
chordwise mass moments of inertia per unit length along the blade are preserved. The effects of the
foreshortening of the blade are also retained. The rigid blade assumption also allows the integrals
associated with this foreshortening to be evaluated. For example,

// Vv dnd¢ = xsin®( (20)

A
The results of the other integrals associated with foreshortening are given in Appendix 8.5.

Since the blade is assumed to be rigid, it is then possible to integrate the work and kinetic
energy terms out the length of the blade. In both cases the terms are explicit in z; the implicit
variation with x comes with blade twist. Both the kinetic energy terms and the work terms are
functions of 6, the pitch at station z out the length of the blade. Since the blade can be twisted,
o = 6o (x). One choice would be to assume a polynomial expansion or similar known form for
o (x). However, in this case no assumption is made about ;. The blade twist 6 is set equal to 6,
at the blade root plus an arbitrary function of x 8y, () . Since 6 is not assumed to be a small angle,
6o appears throughout as cos §y = cos (6. + 64,,) and sin §g = sin (6, + O4,). For an untwisted

blade approximation it is trivial to set 84, to zero throughout. Each individual term is expressed
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asc [ ma™ cos™ By, sin™ 6,,dx where c is not a function of x and the constants nl, n2, and n3

vary between 0 and 2. These integrals are left unevaluated until a twist function is specified with
the other rotor parameters. This method actually results in fewer terms than assuming a linear twist
and integrating into a closed form solution; the need to integrate numerically out the blade is also

removed.

3.25 Strain Energy

Since a rigid blade assumption has been made, the strain energy for the blade is limited to

the springs at the root of the blade.
U = kg (ﬁ—ﬁp) 0B+ k¢ €8¢
+ks,, Bae 68ge cos®
+ (kg Bac 68cs + ks, Bes 6Bae) coswsiny

+ks,, Bas 68cs sin® ¥ (21)

3.2.6  Structural Coupling

Structural coupling between the blade flap and lag is modeled as shown in Fig. 5. This
allows a better approximation of a hingeless blade as R is allowed to vary between 0 and 1. The

structural coupling terms appear only in the stiffness matrix in the flap and lag equations [2] .

3.2.7 Linearization

These strain, kinetic, and work energies are linearized by assuming that each of the
degrees of freedom is equal to a steady value plus a perturbation: for example, 3 = 3 + 63. This
substitution is exact-no simplification is assumed here. The next step, however, is to assume that
products of perturbations are small: §3 - ¢ = 0, for example. As long as the response routine

is of sufficient accuracy, this assumption is reasonable. The resulting steady equations become a
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response routine. If the hub were assumed fixed in space. Hamilton's principle could be applied

at this point to produce equations of motion. With pylon and wing motion, the kinetic, strain, and
work energies from the blade and hub must be added into the kinetic, strain. and work energies
for the pylon and wing before Hamilton’s principle can be applied. However, it is convenient to
express the linearized perturbation values for the blade/hub kinetic, strain, and work energies in the
form of preliminary [Mpiade|, [Chiade), and [Kpiaqe] matrices. A Fourier coordinate transformation
is applied to transform the rotating system coordinates for each blade into fixed-frame coordinates.
The resulting fixed-frame matrices are assembled with the resulting wing and pylon kinetic, strain,

and work energies to give equations of motion for the entire model as described below.

M]{g} + [C]{a} + [K]{q} = {F} 22)
3.3 Pylon and Wing Attachment

The pylon is modeled as a rigid connection between the hub and the wing. The kinetic
energy associated with the motion of the pylon mass and inertia is added to the kinetic energy

associated with the wing-tip motion and the hub motion resulting in additional terms in the total

mass matrix.
( &p [ mpz O 0 0 0 0 1 ( &p )
yp 0 mpy 0 0 0 0 yp
Zp 10 0 mp, 0 0 0 Zp
Mionl§ 5 0=10 0 0 L0 o | & ( 23)
(:1:13 0 0 0 0 I,, O c:lp
Ldp) L0 0 0 0 o 1 ||

where the degrees of freedom zp to-w p are related to the wing-tip degreés of freedom as described
below. To accurately predict the coupling between the wing torsion and vertical bending, three

displacements in the x, y, and z directions are allowed between the pylon center of gravity and the
hub (zce, yce, h) and three additional displacements between the pylon center of gravity and the
wing attachment point (Tpcq, Ypeg, Zpcg)(see Fig. 1 above). The offsets in the z direction h and Zpcg

are important because the rotor and pylon mass offset from the wing couples wing bending and
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torsion. These offsets are taken into account in the assembly process.

The pylon is attached to the wing with a downstop spring, a torsional spring between the
wing-tip and the pylon in the direction of the pylon rotation. As the pylon is rotated forward into
forward flight mode on current tiltrotors, the pylon is locked into position with the wing. This
spring and locking mechanism are modeled by allowing motion between the pylon pitch and the
wing-tip pitch thus creating an additional degree of freedom for the total system. The locking
mechanism is modeled by allowing the spring to be very large in forward flight. The hub motion
is calculated in terms of the pylon pitch ¢, while the wing motion is calculated in terms of the
wing-tip pitch ¢, ;. These two degrees of freedom are related by the strain energy associated
with the downstop spring. This strain energy adds into the strain energy for the blades and the wing

providing additional terms in the total stiffness matrix.

[Kdownstop]{ (éN-H } = kspring [ _11 _11 ] { $N+I } (24)

Pnt2 N+2

3.4 Elastic Wing

The wing is assumed to be an elastic beam and modelled using the finite element method
as shown in Fig. 6. Each node has 5 degrees of freedom: extension in the wing is constrained to

zero. At each node the degrees of freedom are

v

{qnode} = l_ v v w w/ ¢J (25)

in the directions shown above.

3.4.1 Kinetic Energy

The kinetic energy for the beam element is, by definition,
6T = / péal idv (26)
v

For a beam with an offset yca; between the center of gravity and the elastic axis, the displacement



29
vector is given as
U
u= v 27)
W+ Yo
The shape functions used to model the wing are as follows:

vt = [(0-f) 2){ ]

ug

et = L8 213
(-2 ),
v(r,t) = < L (Z)_i(%) “*‘g%)) | J "
R L s
| L(-@)3)?) ) U
(1328 ) .,
w(z,t) = L<(%)“§(%)2+g%)3) WK
o] ez ws
L (@) ) L

Making these substitutions and carrying out the math gives an element mass matrix. The complete
wing matrices are given in Appendix 8.6. Note that the wing vertical bending and torsion are
coupled due to the chordwise offset between the wing center of gravity and the elastic axis. It
is assumed that any offset between the center of gravity and the elastic axis in the z direction

(perpendicular to the chord) is small enough to be neglected.
()

4 6UA 3 UA
du g UA
ov'y o'y
(5wA Wy
uly Wy

6T, = J (‘;Z’;} [(M5] ¢ fjg , (29)

(S’UB i}B
bv'g iy
6w3 wB
dwl W

\ S¢p ) | ¢B J

o~

= §UT [MS|U

Though the extension degree of freedom w is shown in the degree of freedom vector here, the



30
extension in the wing is later constrained to be zero.

3.4.2  Strain Energy

The definition of strain energy can be applied with the shape functions given above to

calculate an element stiffness matrix.

1 Au (z,t) 1 L 8¢ (z,t)\ 2
Ug = EA EA( Oz ) d$+§/0 GJ(T) dr

1 8% ( )\ 2 1 L 8w (z,t)\ >
§Ua = UT [K5]U 31D

This form of the strain energy for the wing is modified with the inclusion of the aeroelastic

couplings as described below.

343  Work Energy

The angle of attack of the wing is given by
w '
a=a0+¢cosA—V—zv sin A 32)
Note that wing sweep A is included which is important because Nixon found wing sweep to be
destabilizing [34] .

The forces are given by

( Ly ) ( 0 )
L, 0
5 M, _ 0
=) Lu f = 3pV2ca, (a0 + ¢cos A — % —w'sinA) r (33)
M, 0
M¢ J \ QPVQCCI e (ao + ¢cosA— 7 ~w smA) J

where e is the chordwxse distance of the elastic axis behind the aerodynarmc center.

The virtual work for the element is given by definition as
L -~ -~
oW = / PéUdx (34)
0

Substituting in the same shape functions as above gives aerodynamic stiffness and damping
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matrices for the wing element. These matrices are given explicitly in Appendix 8.6.

6Wa = 60 ({FA} + [K4) 0 + [C4) D) (35)
3.5 Assembly

Once the kinetic, strain, and work energies are calculated from the blade, hub, pylon,
and wing, Hamilton’s principle can be applied to assemble all of these energies into total system
equations of motion. The [Myade), [Chiade]» and [Kpiade] from the rotor are combined into total
system [A{], [C], and [K] by equating the wing-tip degrees of freedom to the hub motion degrees
of freedom. Since the pylon is rigid, this is just a one-to-one correspondence that can be expressed
as a transformation matrix. The single exception is due to the addition of the downstop spring
which is modeled as an extra torsion degree of freedom in the total degree of freedom vector.

Since the hub degrees of freedom z g, yr, zr, as, ¢, and 1, from the hub and blade
equations are defined in the inertial frame, the hub degrees of freedom can be equated to the wing

tip degrees of freedom in a one-to-one fashion.

(z, ) 001 0 00 O0]( u) (w )
uh 10 0 000 v v
2h |00 0 1 00 A v’

\ —ap (|0 0 0 0 0 1 \ w f:[EE] w f (36)
—dn 00 0 010 w’ w

v ) oo 1 000] 0] Lo )

This transformation becomes c-omplicated by the six offsets. A rotation of the wing tip produces
displacements at the hub because of the offsets z¢@, yog, and h between the pylon center of
gravity and the hub and because of the offsets Zpcg, Ypcg, and zpc4 between the pylon center of
gravity and the wing tip. The exact transformations are given in Appendix 8.7.

A numerical Fourier Coordinate Transformation is applied to the assembled mass, stiffness,
and damping matrices to transform the rotating frame flap and lag into fixed frame coordinates
[8] . The resulting total degree of freedom vector consists of the five degrees of freedom at each

wing finite element node, the blade flap and lag terms, and the gimbal terms. Note the presence of
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®n +2 in the last blade element which is the extra ¢ degree of freedom due to the presence of the

downstop spring.

{gtot} = | Eh ... Ely blade Ely,y gimbal |7 (37
[EL] = (v v w w6

[ Elv | = [ov oy wy wy oy ]

| Blver | = [ ont1 Uy WN+l Wy O Snsn |

I.bladeJ = [50 lglc /313 CO Clc Cls J

L glmbal J = l_ ﬁGC ’BGS J
3.6 Response

Once the total system matrices are assembled, the response is needed, in this case the
coning and pitch setting. The steady values of the blade and hub degrees of freedom are assumed to
be zero in all cases except coning. A value for 875 or ¢y must be given. The inflow equation comes
from momentum theory while the coning and thrust equations are found from the steady terms in
the equations of motion as described above. The coupled response routine uses a Newton-Raphson

iteration to calculate the coning 3, the resulting inflow A, and the unknown of 875 or cr.

3.7 Stability Analysis

The mass, damping, and stiffness matrices for the entire system can now be calculated. The
forcing vector is set to zero for the stability calculation and the resulting matrices are transformed

to state space form.

i el + ) =0 = | B B [ | 750 [ =0 e

The stability of the degrees of freedom is calculated from the eigenvalues. Currently stability

analyses can be conducted by varying either the rotor rotational speed, €2, or the forward speed of
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the tiltrotor, V.

3.8 Modeling of Couplings

The sections above describe the modeling and analysis approach for a baseline model.
This section describes how the couplings in the wing and blade are implemented.

The composite couplings in the wing modify the wing strain energy as shown below
1 [ N2 N2 N\ 2 "\ 2 " o\

Ua =5 / [EA (v) +GJ(¢) +EL (v") +EL (") +2 (Kuev” + Kasw )qs] dx

Jo

(39)

Thus K45 couples wing vertical bending and twist while K45 couples wing chordwise bending and
twist. The sign convention used here is that positive wing vertical bending-twist coupling is when
the blade bends up and the nose of the airfoil pitches up (K45 > 0). Wing chord bending-twist

coupling is defined as positive when the blade bends forward and the nose pitches up (K46 > 0).

The kinematic couplings in the blades are included as changes in the effective twist.
6o = 6o~ Btandéz — (tands + tandsg (Bge cosy + Beg sin)
= o — Bkp, — Chp, + kpsc (Bgc cos + Bag siny) (40)
These coupling terms appear everywhere that the pitch does. For example, the transformation

matrix between the cross-section frame of reference and the undeformed frame is given by

1 0 0
[Tew) = | 0 cosfy  sinby 40
0 —sinfy cos8y
With the blade couplings and gimbal degrees of freedom included, the [T, matrix becomes

10 0
Tew=| 0 (1+TL)cosb+ T2 sinfy —T2 cosfy+ (1+T1,)sinbg 42)
0 TZcosfo— (1+T2,)sinfo (1+TL)cosby + T2, sinbg
where
Tow = ko By G+ (ko B+ ki ¢) (kppa Bac cosv + kpag Bas sinw)
Tc2'u = kpﬁ ,6 + kpc C - kpﬁG /BGC COS’(p - kpﬂG /BGS Sin'l/) (43)

+kpﬁ g kpC C(kpﬁG ﬂGC cosy + kpﬁc EGS sin ’l/))
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The transformation matrix between the deformed frame and the cross-section frame is also altered

by the inclusion of the blade couplings. This matrix is given explicitly in Appendix 8.4. The &3
terms couple blade flap and pitch while 84 couples blade lag and pitch. Positive pitch-flap coupling
is defined to be when the blade flaps up and the nose pitches down (63 > 0). Positive pitch-lag
coupling is when the blade lags back and the nose pitches down (4 < 0). The blade couplings are

included in the response calculations as well as in the stability calculations.
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4 Validation

This section details the validation study which was conducted to give confidence in the
present analysis. Comparisons were made for both a Boeing model which was hingeless and
soft-inplane and for a Bell model which was gimballed and stiff-inplane. Several abbreviations
are used in labeling the modes: WV=wing vertical bending, WC=wing chord bending, WT=wing
torsion. LFL=low frequency rotor lag, HFL=high frequency rotor lag, CL=collective lag, LFF=low
frequency rotor flap, HFF=high frequency rotor flap, CF=collective rotor flap, LFG=low

frequency gimbal flapping motion. and HFG=high frequency gimbal flapping motion.

4.1 Comparison with Hingeless Rotor for Air Resonance

In 1973 Boeing conducted two wind-tunnel tests of the Model 222 rotor in the NASA
Ames 40’ by 80" wind tunnel [26] . This was a full-scale, semi-span model with a 25-foot-diameter
rotor (Fig. 7). The main purpose of this tunnel entry was to gather performance and aeroelastic data
about the Model 222 to validate Boeing’s analysis of that rotor. Regions of degraded stability in
forward flight were observed. Testing was done only in forward flight mode; no ground resonance
data was accumulated.

Four different wind tunnel speeds were used: 50 knots, 100 knots, 140 knots, and 192
knots. Damping for the wing modes and frequencies for the wing vertical bending were gathered.
The data from these wind tunnel tests along with the Boeing analysis of that time are the primary
sources of validation for the current analysis. More data was accumulated for the 100 knot run so

that will be the focus of the validation and preliminary studies.

4.1.1 Fifty Knots

Fig. 8 shows the damping for the wing modes for the Boeing damping as measured at 50

knots. The frequencies are not reported for 50 knots. The circles indicate data gathered at 50 knots
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while the triangles show data gathered at 60 knots in the wind tunnel. Both analyses shown are for

50 knots wind tunnel speed. The wing vertical bending damping shown by the current analysis
matches Boeing’s analysis and the wind tunnel data well. The wing chord damping analyses differ
by approximately 2% critical damping offset. The wing torsion mode is also predicted to be less
damped by the current analysis. The high frequency lag mode is also shown here for the current
analysis because of the high degree of coupling between this mode and the torsion mode around

280 RPM.

4.1.2 One-Hundred Knots

Shown in Fig. 9 and 10 are the frequencies and damping as given for the wind tunnel test,
the Boeing analysis, and the current analysis at 100 knots [26] . The circles are the wind tunnel data
that was generated. Boeing’s analysis is shown in dotted lines while the current analysis is solid.
The frequencies predicted by Boeing’s analysis and the current analysis match well. In general the
wing frequencies predicted by the current analysis are higher than the wing frequencies predicted
by Boeing’s analysis. One possible source of error here comes from the lack of data given in the
report [20] : the wing frequencies (blades off) are reported as 2.5 Hz for wing vertical bending, 4.5
Hz for wing chord bending, and 11.3 Hz for wing torsion. Values for the stiffnesses EIL,, EI,, and
GJ are not explicitly given. These parameters were estimated based on the weight of the wing and
pylon. It is assumed that Boeing’s analysis is based on the actual stiffnesses of the wing design.

One discrepancy is in the wing torsion mode. Boeing’s wing torsion mode is shown to
vary from 4 Hz at 100 RPM to more than 10 Hz at 600 RPM. A body frequency varying by that
magnitude with change in a rotor rotational speed is considered unlikely. However, this mode is
matched well by the current analysis’ high frequency lag mode for lower RPM and is matched less
well at high RPM by the current analysis” wing torsion mode. The vertical lines at 260 RPM and

380 RPM shown in the current analysis are regions where the wing torsion mode couples very
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strongly with high frequency flap around 260 RPM and with high frequency lag around 380 RPM.

The high frequency flap and lag mode frequencies clearly increase with rotor RPM. In the regions
indicated, choosing one frequency for high frequency flap and the other frequency for wing torsion
is inaccurate. Barkai and Rand label both frequencies in these regions with both modes, e.g., high
frequency flap/wing torsion mode, which is one way of indicating these strongly coupled modes
[1].

The damping results show more discrepancies with the Boeing analysis than do the
frequency results. As in the 50 knot case, the high frequency lag mode is also shown for the current
analysis. Since this stability data is shown as a critical damping value, the discrepancy discussed
for the wing torsion mode frequency above will affect the wing torsion damping shown here. The
wing vertical damping predicted matches the wind tunnel data fairly well and certainly shows a
region of air resonance as seen in the wind tunnel. The shift of the instability to higher RPM is
probably due to the higher frequency predicted for the wing vertical bending mode. The wing
chord mode damping as predicted by the current analysis is similar in tendency to Boeing’s analysis
but differs in magnitude by approximately 2%. The wing torsion mode is similarly affected. This

shift in damping is currently not understood.

4.1.3 One-Hundred Forty Knots

Fig. 11 and 12 show the frequency and damping for the wind tunnel test at 140 knots along
with the Boeing analysis and the current analysis. The circles indicate wind tunnel data gathered at
140 knots. This shows that the wing vertical bending damping correlates well with the wind tunnel
data for various forward speeds. Again the frequency data is excellent. The wing chord damping
analyses differ by the same 2% critical damping offset at high RPM. The wing torsion mode is also
predicted to be less damped by the current analysis. The high frequency lag mode is also shown

here for the current analysis because of the high degree of coupling between this mode and the
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torsion mode around 280 RPM.

4.1.4 Discussion

The calculation of the steady coning, inflow, and pitch or thrust requires that one of the
pitch and thrust be given over the rotor rotational speeds to be tested. The Boeing report included
the pitch settings for the wind tunnel testing but not the pitch settings used in the accompanying
analysis. Data for the 75 setting was only available for 7 test points between 320 and 412 knots
for the 50 knot test, for 24 test points between 104 and 470 knots for the 100 knot test, for 11 test
points between 384 and 491 knots for the 140 knot case, and for 7 test points between 315 and 386
knots for the 192 knot test. Linear interpolation was used to estimate 675 values outside of these
ranges. Because of the additional data available for the 100 knot case, all of the results shown in
forward flight mode in the next section were run at 100 knots. This data is shown graphically in
Fig. 13 where the crosses mark values given and the line shows data used for this analysis.

Choices of which modes to model also affect the results. For example, Fig 14. shows
how including the collective lag mode in the stability analysis changes the behavior of the wing
chord damping. The dotted lines are the wing chord bending and rotor collective lag modes as
predicted by the current analysis for frequencies and damping. The solid lines are taken from the
current analysis results having excluded the collective lag mode. This change in behavior calls
into question exactly what modeling assumptions were made for the Boeing analysis, specifically
whether or not the high frequency rotor flap and lag were included. This change in behavior of the
wing chord mode is not expected from helicopter theory: the collective lag mode does not couple
with the body modes to create an air resonance situation as is seen here. Only the low frequency
lag mode is crucial for determining the stability of a helicopter from air and ground resonance.

The airfoil data is not available. Nor are the blade effective hinge offsets or blade

non-rotating natural frequencies. These parameters have been approximated for use in the current
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analysis. The damping is quite sensitive to some of the approximated parameters. Lack of data

such as this could account for some of the discrepancies between the Boeing analysis and the

current analysis.

4.2 Comparison with Gimballed Rotor for Whirl Flutter Analysis

Confidence with a model’s accuracy comes when the model predicts the same behavior
as seen in wind tunnel results and other analyses. Since the majority of research conducted
with tiltrotors concerns whirl flutter, it is important that the current analysis predict whirl flutter
accurately even though this is not the primary emphasis of this research. The current model
includes the gimballed hub specifically for this reason. The gimballed hub modeled here is a Bell
Helicopter hub on the same NASA wing as used above. The first comparison is made with the
response predictions from Nixon’s elastic blade code in UMARC as in Fig. 15 [35],[3]. The cr
values are given and the pitch settings are calculated. This result gives confidence that the response
calculation is consistent with that of other analyses.

The results to be compared next are from Nixon’s rigid blade model {35] . Fig. 16 shows
the frequencies for the whirl flutter analysis which is plotted with increasing velocity rather than
increasing rotor rotational speed as for ground resonance. The solid lines are the current analysis
while the dotted lines represent Nixon'’s analysis. The collective lag motion is not shown. The
agreement between the prediction of the frequencies is excellent. The corresponding damping
values are given in Fig. 17. Again, the current analysis is shown with solid lines while Nixon’s
analysis is shown using dotted lines. The agreement in the damping is not good. The wing mode
damping is smaller for the current analysis prediction as was true for the soft-inplane validation
study. In addition, this analysis predicts more lag damping and less flap damping than does Nixon’s

analysis.
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4.3 Summary of Validation

The air resonance trends shown by the Boeing wind tunnel test from 1973 are well
predicted. The wind tunnel data that was obtained is matched well. The differences in modeling
coupled with the lack of data could easily account for the differences seen in the Boeing analysis
and the current analysis. The response routine matches very well with results from Johnson and
Nixon [17], [35] . The whirl flutter frequencies are also in very good agreement with Nixon’s
analysis. The damping values for whirl flutter remain suspect and require additional attention.
These validation studies, though not totally completed, give enough confidence in the prediction of
tiltrotor air resonance to justify a first parametric study to examine the use of couplings to stabilize

the air resonance instabilities shown.
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5 Preliminary Results and Discussion

The preliminary results presented here can be divided into four parts based on the couplings
discussed: wing vertical bending-twist coupling, wing chordwise bending-twist coupling, blade
pitch-flap coupling, and blade pitch-lag coupling. For each coupling the situations of air resonance
in forward flight mode, air resonance in hover mode, and ground resonance in a non-thrusting
case must be considered. Unlike in a helicopter where the zero-thrust case also entails adding
the landing gear stiffness and damping if present, the ground contact case for the present model
tiltrotor does not change the stiffness or damping matrices. The hover case is for a nominal value
of €& = 0.2 for all RPMs. This gives values of 675 of around 15 degrees.

The baseline frequency and damping for the 100 knots case is given above in the validation
section. The baseline frequencies and damping for the hover case are given in Fig. 19 and 20. In
the forward flight mode the wing vertical bending is very lightly damped. However, in the hover
mode, the wing vertical bending couples with the vertical plunge motion of the rotor which is very
heavily damped. This increase in damping in the wing vertical mode eliminates the air resonance
seen in forward flight mode. Note also that the nominal RPM for the hover configuration changes
to 551 RPM from the forward flight nominal RPM of 386. This hover case assumes that the wind
tunnel velocity is zero since the analysis currently assumes constant-coefficient matrices.

The baseline frequencies and damping for the zero-thrust case are given in Fig. 21 and 22.
The zero-thrust case is also in helicopter mode so again the nominal RPM is 551 RPM. Note that
the cyclic lag mode is included in these figures.

For each type of coupling, the first question examined was whether the positive and
negative coupling of that type stabilized, destabilized, or had no effect on air resonance. Couplings
which destabilized air resonance were no longer considered. If a positive or negative coupling

was shown to stabilize air resonance (or to have only little effect), the effect of that coupling
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was examined on hover and zero-thrust conditions. If hopeful conditions were found for a given

coupling for forward flight, hover, and zero thrust, then whirl flutter was considered.

5.1 Wing Vertical Bending-Twist Coupling

Wing vertical bending-twist coupling was defined as positive with bending up coupled to
nose-up twist, i.e., K45 > 0. Negative beamwise bending-twist coupling (/{45 < 0) destabilizes air
resonance. Positive beamwise bending-twist coupling (K45 > 0) tends to stabilize air resonance
(Fig. 23). This destabilizes the zero-thrust and hover conditions slightly but since this tiltrotor is

extremely stable in these conditions the destabilizing trend is unimportant (Fig. 24 and 25).

5.2 Wing Chordwise Bending-Twist Coupling

Recall that the wing chordwise bending-twist coupling was defined as positive when the
wing bends forward and twists nose up, or K46 > 0. The effects of chordwise bending-twist
coupling on air resonance, hover, and zero-thrust conditions was quite smail. This coupling did not
stabilize the existing air resonance in the Boeing baseline model. If this coupling was required for
some other purpose, it is good to know that this coupling does not significantly harm air or ground

resonance but neither does it stabilize these conditions.

5.3 Blade Pitch-Flap Coupling

Blade pitch-flap coupling is defined above to be positive when blade flapping up
couples with blade twist nose-down, 83 > 0. Both the positive and negative pitch-flap couplings

destabilized the air resonance in the baseline case, though the effect was not very strong.

5.4 Blade Pitch-Lag Coupling

Let pitch-lag be positive when the blade lags back and pitches nose-down, 64 < 0.

The negative pitch-lag coupling destabilized the air resonance. However, the positive pitch-lag
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coupling stabilized the air resonance in the baseline rotor (Fig. 26). These graphs show the blade

low frequency lag and the wing vertical bending. The solid line on these graphs is the baseline
case, the dot-dashed line indicates —5 degrees and the dotted line shows —10 degrees. The
pitch-lag coupling on this tiltrotor’s air resonance instability is found to be effective. This result is
in line with what helicopter studies have found [36] . However, this positive pitch-lag coupling in
helicopters destabilizes the ground resonance instability.

Fig. 27 and 28 show the hover and zero-thrust damping values for the Boeing model. The
addition of positive pitch-lag coupling does not destabilize the hover or ground condition. This
is unlike a the results for a helicopter. One possible cause for this comes from the difference in
stiffness and damping due to the landing gear on a helicopter which become ineffective in forward
flight. The wing vertical bending mode modeled here does not show that loss in stiffness or

damping on take-off.

5.5 Discussion

The aeroelastic couplings discussed here impact the stability of the tiltrotor in air resonance.
The two couplings which show promise for stabilizing air resonance without destabilizing hover
or ground resonance are positive wing beamwise bending-twist coupling (/45 > 0 where the wing
bends up and pitches nose-up) and positive blade pitch-lag coupling (64 < 0 where the blade
lags back and pitches nose-down). Before incorporating these couplings into tiltrotors, it must be
shown that these couplings do not destabilize the tiltrotor in transition or forward flight in hover
mode nor significantly decrease whirl flutter stability margins.

Published whirl flutter coupling results show that chordwise bending forward-pitch
nose down coupling within the wing can add significant stability to the system for whirl flutter

(K46 < 0). Barkai and Rand showed that wing vertical bending up-pitch nose-up coupling also
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adds to the system stability (/{45 > 0) [1] . Popeika et al. showed that tailoring the wing so that as

the wing bends up the pylon pitches nose down could increase the whirl flutter stability (K45 < 0)
[39] . These effects seem to be altered by the inclusion of blade elasticity which was included for
Barkai and Rand but not for Popelka et al.

Nixon showed that flatwise bending-twist coupling in the blades could also increase
the whirl flutter stability margin when flatwise-bending up coupled with nose-down twist; this
coupling tends to offset the precone induced pitch-lag coupling which is destabilizing for whirl
flutter [35] . Tiltrotor blades are highly twisted and use large collective pitches. The chord line
angle with the rotor plane of rotation is very large. The flatwise bending is defined as bending
perpendicular to the plane of rotation. Thus, Nixon’s study on flatwise-bending twist coupled
blades indicates that positive pitch-lag coupled blades could detrimentally affect the stability in
whirl flutter. More research is clearly needed here to assess the effects of these couplings on whirl

flutter.



45
6 Further Research

The preliminary results described above indicate a potential for these couplings which
merits further study. Several refinements are needed and extensive parametric studies should be
conducted to expand the understanding of if and how these couplings can stabilize air and ground
resonance for a soft-inplane tiltrotor. The first step is to understand exactly why the gimballed
rotor damping does not match with Nixon’s predictions. As soon as that is completed, refinements
can be made to the model itself.

The first additional feature to be added is the free flight degrees of freedom for the
fuselage. The model above assumes from the outset that the root of the wing is fixed in space:
the rigid body motion of the entire tiltrotor is not modeled. These free-flight degrees of freedom
could also experience air or ground resonance. The study conducted by Srinivas in 1995 included
these body modes as well as the second rotor and wing. The antisymmetric modes of vibration
for the wing were therefore modeled as well as the symmetric modes which are modeled here.
Srinivas showed that for the baseline case he tested, the whirl flutter stability was governed by
the symmetric modes [46] . It is not clear how the antisymmetric modes will affect ground and air
resonance of a tiltrotor. These modes need to be addressed and studied. This modification will also
include horizontal tail effects and free-flight vehicle trim.

The flexibility in the pylon should also be included. The rigid pylon assumption is not
unreasonable, but since flexibility in the pylon could change the dynamics of the coupling between
the rotor and the wing, it is important to model whatever flexibility exists. This is especially
important for whirl flutter results where the flexibility in the pylon can certainly affect the results.

One of the serious limitations in the model as it stands now is the need to be either in hover
or in airplane mode since the mass, damping, and stiffness matrices are assumed to have constant

coefficients. This limitation eliminates forward flight in helicopter mode and transition. Floquet
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theory will be implemented to allow non-constant matrices for the stability analysis. The finite

element method in time will be implemented to calculate the response. Note that the arbitrary pylon
tilt is already modeled. Other possible improvements would be the use of unsteady aerodynamics.
The earliest models of ground resonance show that damping must be added in both the
fixed frame and in the rotating frame to stabilize air and ground resonance. In the case of a
helicopter this usually entails lag dampers on the blade and dampers on the landing gear. In the
case of a tiltrotor, damping in the rotating frame could still be provided by lag dampers on the
blades, but damping in the fixed frame for a tiltrotor could pose more problems since adding
damping to the lightly damped wing modes is less straightforward. The couplings discussed above
could certainly help the stability. However if these couplings prove to be inadequate to stabilize
a soft-inplane tiltrotor, another suggestions is to use other damping in the wing to increase the
fixed-frame damping. Parametric studies need to be conducted to establish how much damping is

needed in the fixed frame and how much is already accounted for from aerodynamics.
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7 Proposed Time Line, Publications, and Presentations

Validation studies will be completed by the fall semester. The difference in the damping
values for the wing chord and wing torsion modes must be accounted for before an abstract can
be submitted. The first abstract deadline of interest would be for the AIAA SDM conference on
August 1, 1999. The abstract deadline for the AHS Forum 2000 is September 1, 1999.

With a completely validated model, the fuselage rigid body motion will be added. The
preliminary studies of the blade couplings 63 and 8,4 and the wing couplings K45 and K45 must be
completed. These studies will have accomplished the tasks of exploring the possibility of air and
ground resonance in a tiltrotor and evaluating the potential for composite couplings to stabilize
these instabilities. If the validation and parametric studies are completed, an abstract will be
submitted for the AHS Forum 2000.

Once these studies are completed, the additional model refinements will need to be
implemented. Flexibility in the pylon, Floquet theory in stability and response codes, unsteady
aerodynamics, and dynamic inflow must all be implemented. The goal is to have these in place
by summer, 2000. At this point extensive parametric studies must be completed to completely
understand the phenomena of air and ground resonance in a tiltrotor and to determine whether the
couplings can stabilize a soft-inplane hingeless tiltrotor. Work will completed on these tasks by the

end of August, 2000. The dissertation will written and defended in Fall, 2000.
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8 Appendices

8.1 Figures

Fig. 1. Trancendental Model 1-G

(18]
Fig. 2. Articulated Hub

[15]

Fig. 3. Teetering Hub



Fig. 4. XV-15 at NASA Dryden Research Center
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Fig. 12. Tailored flex-beam
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Fig. 20. Elastic Blade
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Fig. 24. Blade Finite Element

Fig. 25. Boeing Model 222 Wind Tunnel Model
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8.3 Ordering Scheme

Throughout the formulation of the equations of motion as described above, an ordering
scheme was applied to reduce the number of terms in the equations. The orders of the various
variables are as shown here. The largest terms in the equations of motion were of order ¢. It was
decided to retain all terms of orders , ¢, €2, and €5 and only linear terms of order 3. This
convention is applied throughout the derivation of the blade and hub matrices. Note that terms

such as 643 refer to the perturbational quantities rather than the variational quantities.
a, cosyy, cosby, v, h, I, Ig, It, ka,, kg,k(b”,kz,ky,kz,kc,
A, 1, z/g,t/c,Sg,sint/z,sinOO,Sx,SC,éo,éo,x,xl
tan‘égl,tan&]ta_pés' ) o
B3,8,8,88,68,68,¢,¢,¢,6¢,6C, 8¢, 6zF, by, 6z,
¢sa6¢saas’6037¢376¢375GCaﬁ657

Order Sm¢,COS¢¢¢¢¢ $.,6,

vbvvfh Ub,vb’Ub)Ub7wbawbawb7wbvwb’wb7
ylvylwihzl
ﬂpﬂ?zn7 a’,C nr’ncs’Ccsa ml7km’
3 ¢S’¢s76¢876¢s’as7a8’6as76as’ ¢s’ ws’6ws76ws’
Ordere:  &p,ip,0cr,6%r, yr,jr, 6y, 8iF, 2F, 3F, 625, O3,
€g
%7u7u7il7 ue,l‘te,ﬁe,iﬁl,
Ordere? [/, vy, dn dC, I vbvb dn dg, iR vbvb dn d¢, I 4 vyt dn dg,
[ 4 wyrw, dn d¢, S awpiy, dn dC, [ [, iy dn dC, [ 4 wyiisy, dn d¢

Order 1



8.4 Coordinate Systems

I
Inertial J;
K,
Iy
Body { Jb
K,
I,
Wing { Juw
K,
Ip
Pylon { jp
Kp
I
Hub { Jh
K
I
Rotating { T,
K,
I,
Undeformed { 7.,
K,
Cross- Le
section { ‘[C
K.
Iy
Deformed { 4

Ky

|
|
|
|
|
)
|

}

centered
at wing ea
(undef)

centered
at wing ea
(undef)

centered
at wing ea
(deformed)

centered
at
pylon CG

centered
at
hub

centered
at
hub

centered
at
hub

centered
at x along
blade

centered
at X along
blade

e
S S N e N e N e e

translation by
steady
vehicle motion

translation by
(0,0,0)

translation by
(xha Yh, Zh)

offset by
(Tpeg» Ypegs Zpeg)

offset by
(zca,yca, )

translation by
(0,0,0)

translation by
(0,0,0)

translation by
(z,0,0)

translation by
(ua UC, wC)
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rotation by
(0,0,0)

rotation by
(0,0,A)

rotation by

(—¢sa —Qg, ws)

rotation by
(0’ apv O)

rotation by
(0,0,0)

rotation by

(0,0,%)

rotation by

(07 _/Bp + 66" 0)

rotation by
(905 07 O)

rotation by
(¢, we, ve)

Note that the Body coordinate system as described above is also an inertial frame of

reference. The transformation matrices as defined above are given as follows:

cos Y,
—siny,
0

[ThA] =

siny, 0
cosy, 0

1

[Thw] =

[Trh] =

cos A
—sin A
0

COS (g
0

— sin o

oS ap
0

sin ayp

cos Y
—siny
0

sinA 0
cosA 0
0 1
0 sinas |
1 0

0 cosag
0 —sina,
10

0 cosap
siny 0
cosy O

0 1

10 0
0 cos¢, —sing,
0 sing, cosg,
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[ cos By 0 sing,

Turj=1 0 10
= sin BP 0 cos ﬁp
1 0 0

[Tew) = | O cosfy  sinby
| 0 —sinfy cosby

1- ~wb - 2”&2 wy sin Gy + vy cos By —vj sin by + wy cos by
(—wj cos @ + vy sin @) sin b ‘ :
de] = — (v, cos @ + wy sin @) cos fy
(Tac] ( (,) & f, in ¢) g cos ¢ sin ¢

(v, cos ¢ + wy sin @) sin Oy
+ (—wy}, cos ¢ + vy sin ¢) cos b
With the gimbal motion included, the matrix [T} as given above is modified to be
cos B3, +sin B, (Bgo cosy + Bggsiny) 0 —cos Bp (B cosy + B siny) + sin Bp
Tur = 0 1 0
T cos B, (Bac cos¥ + Bggsiny) ~sing, 0 cosfB, +sing, (Bgc cosv + Bggsiny)
With the couplings included, (i.e. § = 6 — kpp8 — kpcC + kpsg (B cos ¥ + Begsin))

—sin¢ cos ¢

these matrices change as shown below:
1 0 0
Tew=1| 0 (1+T})cosfy+T2sinby -T2 coso + (1 + T2,) sin o
0 T2 cosfy— (1+Tclu) sin g (l—I—T1 )c0590+T2 sin &g
where

Ty = —kpg Bhpe C+ (kpg B+ ke €) (kpse Bae cost + kpps Bas sin )
T2 = hpg B+ kpe ¢ — kpsa Boc cosv — koG Bag sin

+l€pﬁ }5 kpC g (kpﬁG }3GC COos d' -+ ’l‘?pﬂc /jGS sin 'IL')

wy sin 6y —v} sinflg
1—dw?— 1,2 +v{,1cos 0y +uw 3cos 8o
+Tdc2 +Tdc
(—wy, cos @ + vy sin ¢) sin By
[Tac) = ~ (v, cos ¢ + wj}, sin @) cos by cos ¢ sin ¢
+T7
(v, cos @ + wj sin @) sin By
+ (—wjcos ¢ + vy sing) cosfy  —sing cos ¢
o7y

(— ’”pﬁ + kppg — ’vpﬁ’vpc kppG — kpc) W)
lec2 = < 3kp<kpﬁg k2 o3 AQﬁ — k — 3k ﬁkPC + 3}”pﬂk‘pﬂG ) o coS 90
kgﬁkgck}%ﬁc + QAPﬁAPCI”pﬂG ‘)kpﬁkpckpﬁc - Qkpgkg(kpgc b
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(l”pc l‘pﬁG + Apﬁ]”pHG kpakpc) W),
—kpﬁc + k2 skpckZaq + k2 ckppa + kpe — K2gkp ind
+ -k "pﬁ + ’”pﬂ + 4}”pﬂkp<’”p/36 - Apckpgc o | T

( 31»,,(/»;,[3@ k 1\2 G k — 3k ﬂl‘PC + 3kpgkpgc ) ,
kpﬁ}”pCA’pﬁG' + Qkpﬂkpck 268G ‘)kpg}”p(kpﬁG Qkpﬂkz(kpﬂG cos 8y
+( Cpe +k g-‘}-k 3kp<k B8G — kng)vl’,
kg + Kkpcklaq + Kickpg + ki = Kaghne
"k kpﬁ + kpﬂ + 4kpﬁkp< kpﬂG ko kpﬂG wy,
(kpﬁkpc — kpskpsc — ’»pc ’»pac) U

sin 90

, (kpc = kpgG + Kpg + kpgkpckpsc) w,
T = + ( kopc + kog + 2"1:6}” kppG + 3kpﬁ’”p< 3kpckppG — Qkpﬂkpckpgc ) o | cosbocoso
+2k ﬁkkapﬂG + kpﬁl”pgl”pﬂG 3kpﬁkpﬂG -+ k b

(kpskpc — kpgkpgc — kpckpsc) w,
—4kpﬁkp<kpgc +k ﬁGkPC }‘Pﬁ]”pckpﬁc + k k kpﬂc

+ sin 8 cos
+ | +AZghas — kpﬂkpck 6 — K2skonc + kpﬁkpc R 2 ks | ) ocosé
i —k2 kppc — kpp + kppa — kpg
[ ([ ks + k25 + 2kpgk2 kppc + 3k ﬂk,,c Skpckpac — 2hpakpckZsg y
+ +2kpﬁkp<kp5(; +k ﬁk2 k2 038G — 3kpgkpsc + k b | cos@qsin ¢

L + (—kps + kppc — kppkpckpsc — kp¢) v,

4k:pgkpckpgc + l”pﬁG'l'“PC kpﬁkQ /\,2BG + kzﬁk kp)@(; + kpﬁGI"PB ,

+ —kogkeckose = Koakpsc + koghec + Kockps — Kockpac Wh
—kpg + kppc — k¢ ’

+ (kpckpsc + kppkpsc — kpskpc) vy

sin fg sin ¢

( ]‘pﬁG + Apﬁ + 2k 3’”11(]‘1’/36" + 3k ﬁ}‘PC 3kpg kpgc ‘)kpﬂl”PCkpﬂG ) ,
T3l = +2kZshpchpsa + k2gh2 k256 — Bkppkppe + K2 b | cosfgcos ¢
 (“hip + ki — pshchpac — kp) v
—-4kpgkpckpﬁc +k [JG}"PC kPﬁkkap?ﬁG + I”pﬁ'l” kpgc
+kpﬁG'1‘P5 kpﬁkpckpﬁG kpﬂkpBG + kpﬂkpc + k kpﬁ wl,)
—k2ckpac — kpg + kppg — kp
+ (kpckpac + kpskpsc — kpskpc) vy
(=kps + kpac — kpakpckpac — kpc) ws
+ + ( 3kpgkpc k k k kpBG 2/»p5k kpgc — QI”pB]”PC}”PﬂG ) o cos g sin ¢
| +2kpﬁkqu 28G kpﬁG - kpﬁ + kaﬁkpﬂG + 3kp(kpBG b

sin fg cos ¢

(kp< kps + kpskppc — kpskpc) wy
kps — k2 ’»pc + 4kpﬂkp<k 3G + kpc +k, ’»pﬁc sinfy sin &
+ | —kZpgkes + k kpck o — k2 kpg + kpﬁkpﬂg k2sakec | v 0
L "’Pﬁkpc kpﬁG ’"pﬂ’”pc ’”pﬁG el
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8.5 Rigid Blade Simplification

The following substitutions are made:
U = ¢=0

—sin¢ (z - ¢)

Up
wy = sinfB(x—eyp)
Therefore, the following derivatives with respect to time and length out the blade are also
zero:
i e ¢ b 6 8

The non-zero derivatives are:

Uy = —Ccos((a: —e) wp = B(:L‘—-e])cosﬁ

Up =¢2 (x—ef)sin¢ — ¢ (z —e))cosC wp = —B (x—e;)81n6+ﬁ(x—ef)cosﬂ
v, = —sin( w, = sin B

9y, = —C cos ¢ Uy, = cos B

Ub=éQSiHC—§COSC w;=—52sinﬁ+ﬁcosﬂ

The cross-sectional integrals arising from the foreshortening terms in the kinetic energy

are simplified as follows:

ffAvbvb dn dC—J:sm ¢ [ 4 wyw, dn dC:z_sin26
If4 vbvb dnd¢ = xg sin ¢ cos( [y wyti, dn d¢ = z@sin Bcos 3
1S4 Ubvb dn d¢ = EQ cos? ¢ [ 2ty dnd¢ = 23" cos? Ié;

[ 4 vy, dn d¢ = sin¢ (g cos( — gz sin C) JJ 4wyt dnd¢ = sin 3 ([3 cos 3 — ;‘32 sin B)

It is important to note that all differentiation is completed before any small angle

assumptions are made. Once these substitutions are made, though, 3 and ¢ are assumed to be smail



so that

vp = —( (x —e)
l')b=.—2C(:r—el)

U =C (z—ef)(=((z—e)
v?=—g

b = ~C

i =¢'¢ ¢

ST avyvy dn d¢ = 2¢?
S 4 vty dnd¢ = ng
S 4000, dn d¢ = ¢
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wy = P (x —ef)
wy = B(x —ey) )
Wy = j-'c.32(z—ef)ﬁ+ﬁ’(x—ef)

wé:@
Gy=p
W, =0 8+p

JJawyw, dn d¢ = £6°
.[fA w;,u'J,; dnd¢ = :cﬁ?
[ 4 iy, dn d¢ = 3

Havigydndc=¢ ({=3¢)  ffwyis, dndc =5 (8- 5°8)



8.6 Wing Element Matrices

From the kinetic energy formulation for the wing, a structural mass matrix is calculated.

1S ASS
M$ M3,
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The strain energy formulation gives the structural stiffness matrix.

[ K¢ K3 }
KS] = 11 12
[ ] Kﬁgl ng
[ E4 ¢ 0 0 0 0 |
0 12&L 6EL ¢ 0 0
0 6B 4£. o o o
S — L2 L
Kol = | o 0 0 1Bk 6Bk o
0 0 0 6Bk 4L
| 00 0 0 0 G




[ -E4 0 0 0 0
0 -128L ¢ 0 0 0
s 0 —6%‘ 28L 0 0 0
[Kiz] = 0 0 0 -128L 6EZ 9
0 0 0 —6%11} Qé,fl 0
0 0 0 0 0 -4 ]
24 0 0 0 0 0 ]
0 -128 62 0 0 0
s 0 6%5 2E—fa 0 0 0
[Ka] = 0 0 0 -128h _6ZL ¢
3 ?‘2
0 0 0 62  2E 0
0 0 0 0 0 -4 ]
[ E4 0 0 0 0 ]
0 12k —6% 0 0 0
0 -65k 4EL 0 0 0
(&3] = 0 0 0 128 _6EL ¢
0 0 0 —6%2 4E—fu 0
0 0 0 0 U
The couplings in the wing are added into the stiffness matrix.
[0 0 0 00 0 000 00 0 T
000 00 0 000 00 0
000 00 Kt 0 0 0 00 —Kat
000 00 0 000 00 0
000 00 Kisi 0 00 00 1—K45%
(KC] = 0 0 Kist O Kyt 0 0 0 —Kgt 0 —Kas+ 0
000 00 0 000 00 0
000 00 0 000 00 0
000 00 -Kgt 0 0 0 00 Kot
000 00 0 000 00 0
000 00 -Kgt 0 0 0 00 Kast
0 0 —Ks1 0 —Kgst 0 0 0 Keg7 0 Kgsp O |

The work energy from the aerodynamics gives the motion-independent forcing vector and the



motion-dependent stiffness and damping matrices.
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0 0O %sin AL 0 55 COS AL?
| 0 0 0 3sinAe ——lli sinALe gecosAL |
0 0 0 0 0 0 i
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8.7 Assembly of Wing and Pylon

The [M], [C], and [K] from the coupled rotor hub equations of motion are transformed into
the fixed frame using a Fourier Coordinate Transformation. Tis transformation takes the degree of
freedom vector

| Bo Bie Bis -+ Co Cie Cis - TP Y 2P @ s ¥y Bec Bes |
and returns a new degree of freedom vector of
L Bo Bic Brs -+ Co Cie Cis --- u UN41 U}v“ WN+1 ‘w;vﬂ ®ny2 Bac Bas J
Then these matrices are constrained to remove the u degree of freedom. Note that this is only true
when modeling a wing rigid in extension. This constraint will also be removed when fuselage
motion is included. After this constraint, these matrices can be added into the wing tip degrees of
freedom.
[ Bo Bic Bis - Co Cie Cia - UNHL Uy WNp1 Wy bnie Boc Bas |
Note that the ¢ degree of freedom used here is ¢, or the twist on the pylon side of the downstop

spring. The wing tip will be ¢, the twist on the wing side of the downstop spring.

[A’[wing] = {Tp'f‘e] [A/[FCT] [TPOSt]
"1 0 ... 0] 00 ... 0 [0 0] ]
01 ...0 0 0 0 00
_O 0 ... 1J2N};X2Nh :0 0o ... AN, x6 _0 OJ2N5X2
) ] 0100 0 0 ) ]
Dol = 00 ..0 1000 0 0 0 0
pre 00 ...0 0000 0 -1 0 0
: 0010 0 0 :
0000 =10
(00 . 0y un 000 10 0 | L 000 Joxo
[00...0} "0 0 0} [1 0]
L 00 .. 0 2x2N, -0 0 0 2x6 01 -
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The degrees of freedom from the rotor / hub equations of motion include hub motion
already written in the inertial frame, i.e. after the shaft tilt due to pylon rotation. However, the
pylon rotation must also be taken into account for the pylon masses and inertias. Beyond this
difference, the pylon inertias are also centered at the pylon center of gravity rather than at the hub.

This gives different values for the offsets as shown below.
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